| Kieli | Käännökset |
|---|---|
| bulgaria | производно, производна |
| espanja | derivado, derivada |
| esperanto | derivaĵo |
| hollanti | afgeleide, derivaat, afleiding |
| italia | derivato, derivata, derivativo |
| japani | 派生 (hasei), 派生語 (hasei-go), デリバティブ (deribateィbu / deribatibu), 誘導体 (yūdotai) |
| latina | dērīvātīvus, dēductīvus |
| portugali | derivado, derivativo, derivada |
| puola | pochodny, wtórny, derywat, instrument pochodny, pochodna |
| ranska | dérivée, dérivé, dérivatif, poncif, dériver |
| ruotsi | derivata, härledd, avledd, avledning, starkt inspirerad av förlaga, derivat |
| saksa | Derivat, Abkömmling, Ableitung, abgeleitet |
| suomi | derivaatti, derivaatta, johdannainen, johdos, johdannaissopimus |
| turkki | türev |
| tšekki | odvozenina, derivát, derivace, finanční derivát |
| unkari | származékszó, derivált |
| venäjä | производное слово (proizvodnoje slovo), дериватив (derivativ), производное (proizvodnoje), дериват (derivat), производная (proizvodnaja) |
| viro | tuletis |
| Monikko | derivatives |
| Komparatiivi | more derivative |
| Superlatiivi | most derivative |
(finance) A financial instrument whose value depends on the valuation of an underlying asset; such as a warrant, an option etc.
Derivatives traders in the pit at the Chicago Board of Trade in 1993
(finance) Having a value that depends on an underlying asset of variable value.
Total world derivatives from 1998 to 2007 compared to total world wealth in the year 2000
(calculus) One of the two fundamental objects of study in calculus (the other being integration), which quantifies the rate of change, tangency, and other qualities arising from the local behavior of a function.
The graph of a function, drawn in black, and a tangent line to that graph, drawn in red. The slope of the tangent line is equal to the derivative of the function at the marked point.
(of a function of a single variable f(x)) The derived function of : the function giving the instantaneous rate of change of ; equivalently, the function giving the slope of the line tangent to the graph of . Written or in Leibniz's notation, in Newton's notation (the latter used particularly when the independent variable is time).
The derivative at different points of a differentiable function. In this case, the derivative is equal to .
The value of such a derived function for a given value of its independent variable: the rate of change of a function at a point in its domain.
This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity).