Sanakirja
Tekoälykääntäjä
Kuvat 1
KieliKäännökset
ruotsibinomialsats, binomialsatsen
suomibinomilause

Määritelmät

Substantiivi

  1. (mathematics) A formula giving the expansion of a binomial such as (a+b){\displaystyle (a+b)} raised to any positive integer power, i.e. (a+b)n{\displaystyle (a+b)^{n}}. It's possible to expand the power into a sum of terms of the form axbyc{\displaystyle ax^{b}y^{c}} where the coefficient of each term is a positive integer. For example:

Esimerkit

  • (x+y)^4 \;=\; x^4 \,+\, 4 x^3y \,+\, 6 x^2 y^2 \,+\, 4 x y^3 \,+\, y^4.

(mathematics) A formula giving the expansion of a binomial such as (a+b){\displaystyle (a+b)} raised to any positive integer power, i.e. (a+b)n{\displaystyle (a+b)^{n}}. It's possible to expand the power into a sum of terms of the form axbyc{\displaystyle ax^{b}y^{c}} where the coefficient of each term is a positive integer. For example:

Visualisation of binomial expansion up to the 4th power