Haettu sana löytyi näillä lähdekielillä:
Käännöksiä ei löytynyt valitulle kohdekielelle.
Yritit hakea fraasilla, joka sisältää useita sanoja. Parempien hakutulosten saamiseksi kokeile hakea sanoja erikseen: Cauchy, sequence
Samankaltaisia sanoja
Määritelmät
Substantiivit
- (analysis) A sequence in a normed vector space such that the difference between any two entries can be made arbitrarily small by stipulating that the two entries be sufficiently far out in the sequence.
- (analysis) A sequence x_n in a metric space with metric d such that for every ε > 0 there exists a natural number N so that for every k, m \ge N : d(x_k, x_m) < ε .
Esimerkit
- \lim_{n,m→ ∞} \|x_n-x_m\|=0
- In the case of the real line, every Cauchy sequence converges; that is, being a Cauchy sequence is sufficient to guarantee the existence of a limit. In the general case, however, this is not so. If a metric space does have the property that every Cauchy sequence converges, the space is called a complete metric space.
Taivutusmuodot