Sanakirja
Tekoälykääntäjä
KieliKäännökset
italiasuccessione di Cauchy
ruotsiCauchyföljd
suomiCauchyn jono, Cauchy-jono

Määritelmät

Substantiivi

  1. (mathematical analysis) Any sequence xn{\displaystyle x_{n}} in a metric space with metric d such that for every ϵ>0{\displaystyle \epsilon >0} there exists a natural number N such that for all k,mN{\displaystyle k,m\geq N}, d(x_k, x_m) < ε .

Esimerkit

  • \lim_{n,m→ ∞} \|x_n-x_m\|=0
  • In the case of the real line, every Cauchy sequence converges; that is, being a Cauchy sequence is sufficient to guarantee the existence of a limit. In the general case, however, this is not so. If a metric space does have the property that every Cauchy sequence converges, the space is called a complete metric space.

Taivutusmuodot

MonikkoCauchy sequences