Sanakirja
Tekoälykääntäjä
Kuvat 9

Ääntäminen

  • ÄäntäminenSouthern England
  • Tuntematon aksentti:
    • IPA: /baɪˈd͡ʒɛk.ʃən/
KieliKäännökset
espanjabiyección
hollantibijectie
italiabiiezione, biunivocità
japani全単射 (zentansha), 双射 (sōsha)
kreikkaαμφιμονοσήμαντη αντιστοιχία (amfimonosímanti antistoichía)
portugalibijeção
puolabijekcja, funkcja wzajemnie jednoznaczna
ranskabijection
ruotsibijektion
saksaBijektion
suomibijektio
tšekkibijekce
venäjäбие́кция (bijéktsija)
virobijektsioon

Määritelmät

Substantiivi

  1. (set theory) A one-to-one correspondence, a function which is both a surjection and an injection.

Esimerkit

  • The present text has defined a set to be finite if and only if there exists a bijection onto a natural number, and infinite if and only if there does not exist any such bijection.
  • Note in particular that a function is a bijection if and only if it's both an injection and a surjection.
  • The basic idea is that two sets A and B have the same cardinality if there is a bijection from A to B. Since the domain and range of the bijection is not relevant here, we often refer to a bijection from A to B as a bijection between the sets, or a one-to-one correspondence between the elements of the sets.

Taivutusmuodot

Monikkobijections

(set theory) A one-to-one correspondence, a function which is both a surjection and an injection.

A bijective function, f: X → Y, where set X is {1, 2, 3, 4} and set Y is {A, B, C, D}. For example, f(1) = D.

(set theory) A one-to-one correspondence, a function which is both a surjection and an injection.

Bijection from the natural numbers to the integers, which maps 2n to −n and 2n + 1 to n+1, for n ≥ 0.

(set theory) A one-to-one correspondence, a function which is both a surjection and an injection.

Bijective composition: the first function need not be surjective and the second function need not be injective.